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Abstract

Destination-based forwarding in traditional IP routers has not been able to take full advantage of multiple paths

that frequently exist in Internet service provider networks. As a result, the networks may not operate eﬃciently, es-

pecially when the traﬃc patterns are dynamic. This paper describes a multipath adaptive traﬃc engineering scheme,

called MATE, which is targeted for switched networks such as multiprotocol label switching networks. The main goal

of MATE is to avoid network congestion by adaptively balancing the load among multiple paths based on measure-

ment and analysis of path congestion. MATE adopts a minimalist approach in that intermediate nodes are not required

to perform traﬃc engineering or measurements besides forwarding packets. Moreover, MATE does not impose any

particular scheduling, buﬀer management, or a priori traﬃc characterization on the nodes. This paper presents an

analytical model, derives a class of MATE algorithms, and proves their convergence. Several practical design tech-

niques to implement MATE are described. Simulation results are provided to illustrate the eﬃcacy of MATE under

various network scenarios.

2002 Published by Elsevier Science B.V.
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1. Introduction

Internet traﬃc engineering is emerging as

an important tool to provide fast, reliable and

diﬀerentiated services. According to the Internet

engineering task force (IETF), Internet traﬃc

engineering is broadly deﬁned as that aspect of

network engineering dealing with the issue of per-

formance evaluation and performance optimiza-

* Corrersponding author.

E-mail addresses:
anwar@lucent.com
(A. Elwalid), cheng

jin@cs.caltech.edu (C. Jin), slow@caltech.edu (S. Low).



tion of operational IP networks [1]. More

speciﬁcally, traﬃc engineering often deals with ef-

fective mapping of traﬃc demands onto the net-

work topology, and adaptively reconﬁguring the

mapping to changing network conditions. It is

more general than QoS routing in the sense that

traﬃc engineering typically aims at maximizing

operational network eﬃciency while meeting cer-

tain constraints, whereas the main objective in QoS

routing is to meet certain QoS constraints for a

given source–destination traﬃc ﬂow.

The emergence of multiprotocol label switch-

ing (MPLS) with its eﬃcient support of explicit

1389-1286/02/$ - see front matter
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routing provides basic mechanisms for facilitating

traﬃc engineering [9]. Explicit routing allows a

particular packet stream to follow a pre-deter-

mined path rather than a path computed by hop-

by-hop destination-based routing such as OSPF

or IS–IS. With destination-based routing as in

traditional IP network, explicit routing may be

provided by attaching to each packet the network-

layer address of each node along the explicit path.

This approach generally incurs prohibitive over-

head. In MPLS, a path (known as a label switched

path or LSP) is identiﬁed by a concatenation of

labels which are stored in the nodes. As in tradi-

tional virtual-circuit packet switching, a packet is

forwarded along the LSP by swapping labels.

Thus, support of explicit routing in MPLS does

not entail additional packet header overhead.

In this paper, we propose a state-dependent

traﬃc engineering mechanism called multipath

adaptive traﬃc engineering (MATE). MATE as-

sumes that several explicit LSPs (typically ranges

from 2 to 5) between an ingress node and an egress

node in an MPLS domain have been established

using a standard protocol such as CR-LDP [6] or

RSVP-TE [2], or conﬁgured manually. This is a

typical setting which exists in an operational ISP

network that implements MPLS. The goal of the

ingress node is to distribute the traﬃc across the

LSPs so that the loads are balanced and congestion

is minimized. The traﬃc to be balanced by the in-

gress node is the aggregated ﬂow (called traﬃc

trunk in [7]) that shares the same destination (and

possibly quality of service). Fig. 1 shows an example

of a network environment where there are two in-

gress nodes, AI and BI, and two egress nodes, AE

and BE, in an MPLS domain. MATE would be run

on AI and BI to balance traﬃc destined to AE and

Fig. 1. A transit network running MATE.



BE, respectively, across the LSPs connecting AI to

AE and BI to BE. Note that the LSPs connecting

the two pairs may share links. In the following, we

will derive adaptive MATE algorithms, discuss

their implementation, and present simulation re-

sults to illustrate their performance. We will prove

that it is possible to achieve stability even when

ingress–egress (IE) pairs operate asynchronously

and in a distributed manner.

We now comment on related work. Several

researchers have proposed to add traﬃc engi-

neering capabilities in traditional datagram net-

works using shortest path algorithms (e.g., see

[5,10]). Although such schemes have been shown

to improve the eﬃciency of the network, they

suﬀer from several limitations including:

•
load sharing cannot be accomplished among

paths of diﬀerent costs,

•
traﬃc of diﬀerent QoS classes follow the same

route,

•
traﬃc/policy constraints (for example, avoiding

certain links for particular source–destination

traﬃc) are not taken into account,

•
modiﬁcations of link metrics to re-adjust traﬃc

mapping tend to have network-wide eﬀects and

may cause undesirable and unanticipated traﬃc

shifts, and

•
traﬃc demands must be predictable and known

a priori.

The combination of MPLS technology and its

traﬃc engineering capabilities are expected to

overcome these limitations. Explicit LSPs and

ﬂexible traﬃc assignment address the ﬁrst two

limitations. Constraint-based routing has been

proposed to address the third limitation. Further-

more, network-wide eﬀects can be prevented since

LSPs can be pinned down. A change in LSP route

limits the disturbance of the traﬃc for the corres-

ponding source–destination pair. The objective of

this paper is to address the ﬁnal limitation.

In MPLS, traﬃc engineering mechanisms may

be time dependent or state dependent. In a time-

dependent mechanism, historical information based

on seasonal variations in traﬃc is used to pre-

program LSP layout and traﬃc assignment. Addi-

tionally, customer subscription or traﬃc projection
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may be used. Pre-programmed LSP layout typi-

cally changes on a relatively long time scale (e.g.,

diurnal). Time-dependent mechanisms do not

adapt to unpredictable traﬃc variations or chang-

ing network conditions. An example of a time-

dependent mechanism is a global centralized

optimizer where the input to the system is a traﬃc

matrix and multiclass QoS requirements as de-

scribed in [8].

When there are appreciable variations in actual

traﬃc that could not be predicted using historical

information, a time-dependent mechanism may not

be able to prevent signiﬁcant imbalance in loading

and congestion. In such a situation, a state-depen-

dent mechanism can be used to deal with adaptive

traﬃc assignment to the established LSPs accord-

ing to the current state of the network which may be

based on utilization, packet delay, packet loss, etc.

In this paper, we assume that LSP layout has been

determined. The focus is on load balancing traﬃc

among multiple LSPs between an ingress node and

an egress node.

The rest of the paper is organized as follows.

Section 2 details the overall MATE scheme and

discusses several implementation techniques, such

as traﬃc ﬁltering and distribution, traﬃc measure-

ment, bootstrapping, etc. Section 3 presents an

analytical model of MATE and proves its stabi-

lity and optimality. Section 4 describes an experi-

mental setup to verify the eﬀectiveness of the

proposed scheme. Section 5 presents the simula-

tion results that illustrate the behavior of the al-

gorithm in diﬀerent environments. Conclusions are

given in Section 6. Analytical proofs are collected

in the Appendix A.

2. MATE algorithms and implementation tech-

niques

2.1. Overview

The basic idea of MATE is as follows. The in-

gress node of each LSP periodically sends probe

packets to estimate a congestion measure on the

forward LSP from ingree to egress. The congestion

measure can be delay, loss rate, or other perfor-

mance metrics; see below for measurement details.




Each ingress node then routes incoming traﬃc

onto multiple paths to its egress node in a way that

equalizes the
marginal
congestion measure (their

derivatives). That is, traﬃc will be shifted from

LSPs with higher marginals to LSPs with lower

marginals. In equilibrium all LSPs that carry any

ﬂow will have minimum and equal marginals. As

will be shown in the next section, equalizing the

marginal measure minimizes the total congestion

measure of the entire MPLS network.

Fig. 2 shows a functional block diagram of

MATE located at an ingress node. Incoming traﬃc

enters into a
ﬁltering and distribution function

whose objective is to facilitate traﬃc shifting

among the LSPs in a way that reduces the possi-

bilities of having packets arrive at the destination

out of order. The mechanism does not need to

know the statistics of the traﬃc demands or ﬂow

state information. The traﬃc engineering function

decides when and how to shift traﬃc among the

LSPs. This is done based on LSP statistics which

are obtained from the
measurement and analysis

function.

MATE operates in two phases: a monitoring

phase and a load balancing phase. In the moni-

toring phase, probe packets are sent periodically,

and congestion measure on the LSPs and their

derivatives are estimated. If an appreciable and

persistent change in the network state is detected,

transition is made to the load balancing phase. In

the load balancing phase, the algorithm continues

to monitor congestion measures on the LSPs and

tries to equalize their marginals. Once the mea-

sures are approximately equalized, the algorithm

transits to the monitoring phase and the whole

process repeats.

Fig. 2. MATE functions in an ingress node.
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One-way
LSP statistics (congestion measure)

such as packet delay and packet loss are measured

by transmitting probe packets periodically to the

egress node which returns them back to the ingress

node. Probing may be done per class, i.e., probe

packets have the same type of service header in-

formation as the traﬃc class being engineered.

Based on the information in the returning probe

packets, the ingress node is able to compute the

one-way LSP statistics. Estimators of LSP sta-

tistics from the probes are obtained reliably and

eﬃciently using bootstrap resampling techniques

(see below). Recent measurements in the Internet

indicate little variations of aggregate traﬃc on

links in 5-min intervals [12]. This quasi-stationa-

rity condition where traﬃc statistics change rela-

tively slowly (much longer than the round-trip

delay between the ingress and egress nodes) faci-

litates traﬃc engineering and load balancing based

on measurement of LSP statistics.

The derivative can be derived by measuring

these statistics at diﬀerent loads. Speciﬁcally, the

ingress node varies the traﬃc on each LSP slightly,

measure the statistics before and after the varia-

tion, and use the scaled diﬀerence as an estimate

of marginal congestion measure. For example, let

DsрxsЮ
be the delay on LSP
s
when
xsamount

of traﬃc is routed on the LSP, and let
Dsрxsю
Ю

be the new delay when an amount
of traﬃc is

added to the LSP. Then the marginal delay D0sрxsЮ

is estimated as
рDsрxsю
Ю  DsрxsЮЮ=. Note that

ﬁxed propagation delay has no eﬀect on the de-

rivative.

Some of the features of MATE include:

•
distributed adaptive load-balancing algorithm,

•
end-to-end control between ingress and egress

nodes,

•
no new hardware or protocol requirement in

intermediate nodes,

•
no knowledge of traﬃc demand is required,

•
no assumption on the scheduling or buﬀer man-

agement schemes at a node,

•
optimization decision based on path congestion

measure,

•
minimal packet reordering, and

•
no clock synchronization between two nodes

(see Section 2.3).



2.2. Traﬃc ﬁltering and distribution

The traﬃc ﬁltering and distribution function

ﬁrst distributes the engineered traﬃc for a given IE

pair equally among N bins, where the number of

bins determines the minimum amount of the traﬃc

that can be shifted. If the total incoming traﬃc to

be engineered is of rate
R
bps, each bin would

receive an amount of
r ј R=N
bps. Then, the

traﬃc from the N bins is mapped into the M LSPs

according to the MATE algorithm described in

Section 2.1.

The engineered traﬃc can be ﬁltered and dis-

tributed into the N bins in a number of ways. A

simple method is to distribute the traﬃc on a per-

packet basis without ﬁltering. For example, one

may distribute incoming packets at the ingress

node to the bins in a round-robin fashion. Al-

though it does not have to maintain any per-ﬂow

state, the method suﬀers from potentially having

to reorder an excessive number of packets for a

given ﬂow. On the other extreme, one may ﬁlter

the traﬃc on a per-ﬂow basis (e.g., based on

<source IP address, source port, destination IP

address, destination port, IP protocol> tuple), and

distribute the ﬂows to the bins such that the loads

are similar. Although per-ﬂow traﬃc ﬁltering and

distribution preserves packet sequencing, this ap-

proach has to maintain a large number of states to

keep track of each active ﬂow.

MATE ﬁlters the incoming packets using a hash

function on the IP ﬁeld(s). The ﬁelds can be based

on the source and destination address pair, or

other combinations. A typical hash function is

based on cyclic redundancy check (CRC). The

purpose of the hash function is to randomize the

address space to prevent hot spots. Traﬃc can be

distributed into the N bins by applying a modulo-

N operation on the hash space. Note that packet

sequence for each ﬂow is maintained with this

method.

After the engineered traﬃc is distributed into

the N bins, a second function maps each bin to the

corresponding LSP according to the MATE al-

gorithm. The rule for the second function is very

simple. If LSP i is to receive twice as much traﬃc

as LSP
j, then LSP i
should receive traﬃc from

twice as many bins as LSP j. The value N should

A. Elwalid et al. / Computer Networks 40 (2002) 695–709
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be chosen so that the smallest amount of traﬃc

that can be shifted, which is equal to 1=N
of the

total incoming traﬃc, has a reasonable granular-

ity.

2.3. Traﬃc measurement and analysis

MATE does not require each node to perform

traﬃc measurement. Only the ingress and egress

nodes are required to participate in the measure-

ment process.

Our experience suggests that packet delay is a

metric that can be reliably measured. The delay of

a packet on an LSP can be obtained by transmit-

ting a probe packet from the ingress node to the

egress node. The probe packet is time-stamped at

the ingress node at time T1and recorded at the

egress node at time T2. If the ingressХ clock is faster

than the egressХ
clock by Td, then the total packet

delay (i.e, queueing time, propagation time, and

processing time) is T2T1ю Td. A group of probe

packets sent one at a time on an LSP can easily

yield an estimate of the mean packet delay

EЅT2T1 ю Td. The reliability of the estimator can

be evaluated by bootstrapping (see details below)

to give the conﬁdence interval for the mean delay.

An important point to note is that, since we use

only marginal delay, the value of
Tdis not re-

quired. Therefore, clock synchronization is not

necessary.

Packet loss probability is another metric that

can be estimated by a group of probe packets. In

general, only reasonably high packet loss rates can

be reliably observed. Packet loss probability can be

estimated by encoding a sequence number in the

probe packet to notify the egress node how many

probe packets have been transmitted by the ingress

node, and another ﬁeld in the probe packet to

indicate how many probe packets have been re-

ceived by the egress node. When a probe packet

returns, the ingress node is able to estimate the

one-way packet loss probability based on the

number of probe packets that has been transmitted

and the number that has been received. The ad-

vantage of this approach is that it is resilient to

losses in the reverse direction.

The bootstrap is a powerful technique for as-

sessing the accuracy of a parameter estimator in




situations where conventional techniques are not

valid [14]. Most other techniques for computing

the variance of parameter estimators or for setting

conﬁdence intervals for the true parameter assume

that the size of the available set of sample values is

suﬃciently large, so that asymptotic results (cen-

tral limit theorem) can be applied. However, in

many situations the sample size is necessarily

limited, such is the case in traﬃc engineering

mechanisms like MATE, where the probe packet

load should not consume signiﬁcant network re-

sources. In MATE, we use the bootstrap to obtain

reliable estimates of the congestion measures of the

mean delay and cell loss rate from a given set of

measurements obtained via the probe packets. By

selecting a desirable conﬁdence interval, we get a

dynamic way of specifying the number of obser-

vations needed. This provides a built-in reliability

estimator which automatically selects the required

number of probe packets to send. We have found

this quite useful in our implementations, in com-

parison with schemes where the number of probe

packets is set in an ad hoc manner, and the number

of probes may be too small or too large. The fol-

lowing is a basic procedure for computing a con-

ﬁdence interval:

•
Step
0: Suppose the original sample is
X
ј

fx1; x2; . . . ; xmg.

•
Step
1: Draw a random sample of
m
values,

with replacement, from
X. This produces the

bootstrap resample Y.

•
Step 2: Calculate the mean for Y (say, l1).

•
Step 3: Repeat steps 1 and 2 a large number of

times to obtain
n
bootstrap estimates
l1; l2;

. . . ; ln.

•
Step
4: Sort the bootstrap estimates into in-

creasing order lр1Ю; . . . ; lрnЮ.

•
Step 5: The desired р1
aЮ100% bootstrap conﬁ-

dence interval for the mean is (lрq1Ю,
lрq2ЮЮ,

where q1ј рna=2Ю
and q2ј n
q1ю 1.

3. MATE stability

In this section we present an analytical model

of MATE and prove their stability and optima-

lity.
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(see also [4, Chapter 5]). It says that at optimality

a pair splits its traﬃc only among LSPs that have

We model a MATE network by a set
L
of

unidirectional links. It is shared by a set
S
of IE

node pairs, indexed 1; 2; . . . ; S. Each of these IE

pairs
s
has a set
Ps2Lof LSPs available to it.

Note that, by deﬁnition, no two (distinct) IE pair

uses the same LSP, even though some of their

LSPs may share links. Hence Psare disjoint sets.

An IE pair s has a total input traﬃc of rate rs

and routes
xspamount of it on LSP
p 2 Pssuch

that

X


the minimum (and hence equal) ﬁrst derivative

lengths.

Theorem 1. The rate vector x
is optimal if and only

if, for each pair s, all LSPs
p 2 Pswith positive

flows have minimum (and equal) first derivative

lengths.

3.2. Asynchronous algorithm

A standard technique to solve the constrained

p2Ps


xspј rs;
8 s:


optimization problem (1)–(3) is the gradient pro-

jection algorithm. In such an algorithm routing is

Let xsј рxsp, p 2 PsЮ be the rate vector of s, and let

x ј рxsp, p 2 Ps, s 2 SЮ
the vector of all rates. The

ﬂow on a link l 2 L has a rate that is the sum of

source rates on all LSPs that traverse link l:


iteratively adjusted in opposite direction of the

gradient and projected onto the feasible space de-

ﬁned by (2) and (3). Each iteration of the algo-

rithm takes the form

xlј


X


X


xsp:


xрt ю 1Ю ј ЅxрtЮ  crCрtЮю;

s2S
l2p;p2Ps

Associated with each link
l
is a cost
ClрxlЮ
as a

function of the link ﬂow xl. We assume that, for all

l, ClрЮ is convex (and hence continuous).

Our objective is to minimize the total cost

CрxЮ јPlClрxlЮby optimally routing the traﬃcs

on LSPs insPs:

X

min
CрxЮ ј
ClрxlЮ
р1Ю

x

l


where
c > 0 is a stepsize and should be chosen

suﬃciently small, rCрtЮ
is a vector whose рs; pЮth

element is the ﬁrst derivative length
ЅrCрtЮspј

oC=oxspof LSP p at time t, and Ѕzюis the projec-

tion of a vector z onto the feasible space. The al-

gorithm terminates when there is no appreciable

change, i.e., jjxрt ю 1Ю  xрtЮjj <  for some prede-

ﬁned
.

Note that the above iteration can be distribu-

subject to


X

p2Ps


xspј rs;
8 s 2 S ;


р2Ю


tively carried out by each pair s without the need

to coordinate with other pairs:

xspP 0;
8 p 2 Ps; s 2 S:


р3Ю


xsрt ю 1Ю ј ЅxsрtЮ  crCsрtЮю;


р4Ю

A vector x is called a feasible rate if it satisﬁes (2)

and (3). A feasible rate x is called optimal if it is a

minimizer to the problem (1)–(3).

As observed in [4, Chapter 5], the derivative of

the objective function with respect to xspis


where xsрtЮ ј рxspрtЮ; p 2 PsЮ
is rate vector of
s at

time t, and rCsрtЮ ј рoC=oxspрxрtЮЮ;
p 2 PsЮ
is the

vector of ﬁrst derivative lengths of LSPs in
Ps.

However (4) is not realistic, for two reasons.

First (4) assumes all updates are synchronized.

oC

oxsp

рxЮ ј


X

l2p


l

Cl0рx Ю:


Second it assumes zero feedback delay. Speciﬁcally

(4) assumes that as soon as the IE pairs have cal-

culated a new rate vector xрtЮ, it is reﬂected im-

We will interpret
C0lрxlЮ
as the ﬁrst derivative


mediately in all the link ﬂows:

length of link
l, and oC=oxspрxЮ
as the (ﬁrst deri-

vative) length of LSP p.

The following characterization of optimal rate is


xlрtЮ ј


X

s


X

l2p; p2Ps


xspрtЮ


р5Ю

a direct consequence of the Kuhn–Tucker theorem


and in all the ﬁrst derivative lengths:
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oCрxрtЮЮ јX
oxsp


l

C0lрx рtЮЮ:



р6Ю



•
Latest average: only the average over the latest

k
rates is used in the measurement of
^lрtЮ,

l2p

Moreover all pairs
s
have available these new

values in rCsрtЮ for computation of the rate vector

in the next period. In practice the IE pairs update

their rates asynchronously and in an uncoordi-

nated manner. Moreover the ﬁrst derivative length

of a LSP can only be estimated empirically by

averaging several measurements over a period of

time. We now extend the model to take these

factors into account.


i.e., alspрt0; tЮ > 0 for t0јs
k ю 1; . . . ; s and 0

otherwise, for some (typically
unknown)
s 2

ft
t0; . . . ; tg.

An IE pair s estimates the ﬁrst derivative length

of an LSP
p 2 Psby asynchronously collecting a

certain number of measurements (using probe

packets, see below), and forming their mean.

Hence (cf. (6))

Xt
X

Let
Ts f1; 2; . . . ; g
be a set of times at which

IE pair
s
adjusts its rate based on its current

knowledge of the (ﬁrst derivative) lengths of LSPs


kspрtЮ ј


t0јt
t0
l2p


blspрt0; tЮCl0р^lрt0ЮЮ;


р10Ю

p 2 Ps. At a time
t 2 Ts,
s
calculates a new rate

vector


Xt
t0јt
t0


blspрt0; tЮ ј 1;
8 t; 8 l; s; p 2 Ps:


р11Ю

xsрt ю 1Ю ј ЅxsрtЮ  cksрtЮюр7Ю

and, starting from time
t ю 1, splits its traﬃc
rs
along its LSPs in
Psaccording to
xsрt ю 1Ю
until

after the next update time in Ts. Here ksрtЮ
is an

estimate of the ﬁrst derivative length vector at time

t, and is calculated as follows.

The new rates calculated by the IE pairs may be

reﬂected in the link ﬂows after certain delays. We

model this by (cf. (5))


Again the estimate is obtained by ФaveragingХ
over

the past values of LSP lengths, and can depend on

рl; s; p; tЮ. The model is very general and include

the special cases of using only the last received

measurement or the average over the last k values,

as discussed above. The interpretation in both

cases is that the measurementsPl2pC0lр^lрt0ЮЮfor

t0 > s have not been received by s by time t, and

the measurements for
t0 < s (latest data only) or

for t06s
k (latest average) have been discarded.

^lрtЮ ј

Xt

Xt

t0јt
t0


X

s


X

l2p;p2Ps



alspрt0; tЮxspрt0Ю;



р8Ю


This concludes the description of our algorithm

model (Eqs. (7)–(11)). The model is similar to that

in [13], with two diﬀerences. First their model

distinguishes between the desired rate
xрtЮ
as cal-

culated by the projection algorithm and the actual

t0јt
t0


alspрt0; tЮ ј 1;
8 t; 8 l; s; p 2 Ps:


р9Ю


realized source rate ^рtЮ. The actual rate ^рtЮ
is a

convex combination of the current desired rate xрtЮ

In the above ^lрtЮ represents the ﬂow rate available

at link
l
at time
t
and is an weighted average

(convex sum) of past source rates
xspрt0Ю. The

weights alspрt0; tЮ
depend on рl; s; p; tЮ
and can be

diﬀerent between each source s and link l, on dif-

ferent LSPs p, and at diﬀerent times t. This model

is very general and includes in particular the fol-

lowing two popular types:

•
Latest data only: only the latest rate xspрsЮ, for


and the previous actual rate ^рt
1Ю. This models

the fact that a desired rate xрtЮ may not be realized

immediately, as in a virtual circuit network where

virtual circuits may persist over several update

cycles. We are however only dealing with IP data-

grams and hence it is reasonable to assume that

each ingress node can shift its traﬃc among the

LSPs available to it immediately after each update.

Second their model assumes that, at time t, each s

has available the current ﬁrst derivative lengths

P


0р^lрtЮЮ and uses it in place of the gradient in

some (typically unknown)
s 2 ft
t0; . . . ; tg, is

used
in
the
measurement
of
^lрtЮ,
i.e.,

alspрt0; tЮ ј 1 if t0јs and 0 otherwise.


l2pC
the update algorithm. We however assume that, at

time
t, s may only have outdated ﬁrst derivative
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lengths (see (10) and (11)); moreover
s
uses a

weighted average over several past lengths in the

update algorithm. This is because, in our case,
s

can only estimate the ﬁrst derivative lengths

through noisy measurement. Despite these diﬀer-

ences, stability can be established using the same

techniques.

The next result states that the algorithm con-

verges to an optimal routing, provided the fol-

lowing conditions are satisﬁed:

C1 The cost functions
ClрzЮ
are twice continu-

ously diﬀerentiable and convex.

C2 Their derivatives
C0lрzЮ
are Lipschitz over any

bounded sets, i.e., for any bounded set
Bl
R
there exists a constant
clsuch that for all

z; z02Bl, we have jCl0рzЮ  Cl0рz0Юj6
cljz
z0j.

C3 For any constant
c
the sets
fzjClрzЮ 6 cg
are

bounded.

C4 The time interval between updates is bounded.

Theorem 2. Under conditions C1–C4, starting from

any initial vector
xр0Ю,
there exists a sufficiently

small stepsize c such that any accumulation point of

the sequence
fxрtЮg
generated by the asynchronous

algorithm is optimal.

A more careful accounting shows that the

stepsize
c, and hence the speed of convergence,

depends on the degree of asynchronism as ex-

pressed by the parameter
t0deﬁned in (8), the

ФsteepnessХ
of the cost function as expressed by the

Lipschitz constant in condition C2, and the size of

the network. For ease of exposition, suppose the

cost functions are uniformly globally Lipschitz,

i.e., for all links l and all z, z0, we have

jCl0рzЮ  Cl0рz0Юj 6 Ljz
z0j:

Theorem 3. An upper bound in Theorem 2 is

1

c <
;

Lр1 ю phkр2t0ю 1ЮЮ

where p is the total number of LSPs in the network,

h is the number of hops in the longest
(maximum-

hop) LSP, k is the maximum number of LSPs going

through a link, and t0,
defined in (8),
measures the

degree of asynchronism.



The theorem suggests that the larger the degree

of asynchronism measured by t0, the smaller the

stepsize (required for convergence) and hence

slower the convergence.

4. Experimental methodology

In this section, we use simulations to evaluate

the eﬀectiveness of MATE. We concentrate on two

network topologies: one with a single IE pair

connected by multiple LSPs, and the other with

multiple IE pairs where some links are shared

among the LSPs from diﬀerent pairs, as shown in

Figs. 3 and 4. All links are identical so that the

LSPs have the same bottleneck link bandwidth.

Note that in the latter case, there is a considerable

interaction between the pairs.

We wrote a packet level discrete-event simula-

tor, which supports entities such as packet queues,

switched LSPs, network connections. We consider

Fig. 3. Experiment network topology 1.

Fig. 4. Experiment network topology 2.


A. Elwalid et al. / Computer Networks 40 (2002) 695–709

networking environments where the traﬃc condi-

tions vary due to changes in network load (link

utilization), for example, due to ‘‘rush hour’’
conditions, or some LSP failures, and traﬃc varia-

tions due to correlations and dependencies. We

have two types of traﬃc in our simulator: engi-

neered traﬃc and cross-traﬃc. The engineered

traﬃc is the traﬃc that needs to be balanced, and

the cross-traﬃc is the background traﬃc that we

have no control over such as traﬃc on short-lived

connections. We assign a lifetime to each traﬃc

source so we are able to simulate the dynamic

behavior of a network by switching on and oﬀ
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cross-traﬃc sources. We consider a traﬃc model

which exhibits short-range dependencies, such as

Poisson, and another model which can be tuned to

approximate long range dependence. For the latter

we use the DAR(p) process (discrete autoregressive

process of order
p) [11]. The parameter
p
deter-

mines the time-scale over which traﬃc dependency

and correlation are exhibited. If p
is 1, the pro-

cess is a standard Markov process. In our experi-

ments we set p
to a value of 10; this leads to a

substantial degree of correlation in the generated

traces.

In each of our simulations, the engineered

traﬃc for each pair ﬂows from the ingress node to

the egress node. The cross-traﬃc enters at the in-

termediate node and exits at egress node(s). We

consider two implementations of the basic algo-

rithm. In the ﬁrst one, a small random delay is

introduced before the algorithm moves from the

monitoring phase to traﬃc engineering phase upon

detection of change in traﬃc conditions. This dam-

ping mechanism reduces synchronization among

multiple ingress nodes. In the second implemen-

tation, there is a coordination among the ingress

nodes so that only one ingress node at a time en-

ters the traﬃc engineering phase. This obviously

requires a special coordination protocol. We omit

the details in this paper.

5. Simulation results

In this section, we present simulation results

that illustrate the convergence properties of

MATE.


Fig. 5. Oﬀered load under Poisson traﬃc for network topology

1.

Fig. 6. Loss under Poisson traﬃc for network topology 1.

First we present two sets of results for the single

IE pair. Figs. 5 and 6 show the results of an ex-

periment with Poisson traﬃc on the network in

Fig. 3. Initially, all of the engineered traﬃc streams

are routed on one of the LSPs, and cross-traﬃc

enter the network at the intermediate nodes con-

necting the ingress and egress nodes. We have an

unbalanced situation with one heavily congested

LSP and ﬁve lightly loaded LSPs. As shown in the

plot, the algorithm is able to successfully reduce

the engineered traﬃc from the overloaded link and

distribute them to the under-utilized links. The loss

curve shows clearly that the loss rate on the ﬁrst
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LSP dropped from 40% to a value that is too small

to observe. The loss rates on the other LSPs are

maintained at negligible levels throughout the

simulation. The ﬁnal traﬃc distribution converges

to a steady state, where utilizations are very close

on all LSPs. We observe similar behavior in Figs. 7

and 8 where the Poisson streams are replaced with

DAR traﬃc streams. The probe traﬃc required in

each phase of the algorithm is around 0.5% of the

engineered traﬃc.

Figs. 9–12 show the simulation scenario for Fig.

4 under the two implementations mentioned ear-

lier. Again the engineered traﬃc streams travel

Fig. 7. Oﬀered load under DAR traﬃc for network topology 1.

Fig. 8. Loss under DAR traﬃc for network topology 1.



Fig. 9. Oﬀered load under Poisson traﬃc for network topology

2.

Fig. 10. Loss under Poisson traﬃc for network topology 2.

Fig. 11. Oﬀered load under Poisson traﬃc with coordination

for network topology 2.
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Fig. 12. Loss under Poisson traﬃc with coordination for net-

work topology 2.

Fig. 13. Cross-traﬃc for network topology 2.

from the ingress node to the egress node, and the

cross-traﬃc enters through the intermediate nodes

and exit at the egress nodes. The cross-traﬃc dy-

namics are shown in Fig. 13. There is a decrease in

cross-traﬃc on link 3 right before 2000 s and a

increase in cross-traﬃc on link 2 around 3600 s. In

order to balance traﬃc, the algorithms must shift

traﬃc into link 3 and possibly out of link 2. Both

implementations essentially achieve the same per-

formance, where utilizations and loss rates on

three LSPs are comparable. Figs. 14 and 15 show

the same simulation with DAR traﬃc instead of

Poisson traﬃc where coordination among ingress

node is used.



Fig. 14. Oﬀered load under DAR traﬃc with coordination for

network topology 2.

Fig. 15. Loss under DAR traﬃc with coordination for network

topology 2.

6. Conclusion

Our focus on this paper is to apply adaptive

traﬃc engineering to utilize network resource more

eﬃciently and minimize congestion. We have

proposed a class of algorithms called MATE,

which tries to achieve these objectives using mini-

mal assumptions through a combination of tech-

niques such as bootstrap probe packets, which

control the amount of extra traﬃc, and marginal

delays that are easily measurable and do not re-

quire clock synchronization. Further, we prove the

stability and optimality of MATE. Our simula-

tion results show that MATE can eﬀectively re-

move traﬃc imbalances among available LSPs. We

observe that, in many cases, high packet loss rates
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can be signiﬁcantly reduced by properly shifting

some traﬃc to less loaded LSPs. This should

beneﬁt many applications such as TCP. For future

Appendix A



work we will consider more realistic networking

environments and examine the impact of MATE

on the application level.

Proof of Theorem 1. Since the cost function is convex the ﬁrst order optimality condition is both necessary

and suﬃcient: x
is optimal if and only if x
is feasible and there exist constants nssuch that for all рs; pЮ

oCрx Ю јXl

C0lрx
Ю P nsрA:1Ю

oxsp

l2p

with equality if xsp> 0. Hence all LSPs p 2 Pswith xsp> 0 have their ﬁrst derivative lengths equal to ns.

Proof of Theorem 2. Its proof is adapted from that in [13]. Let zрtЮ ј xрt ю 1Ю  xрtЮ. Using a ﬁrst order

Taylor expansion for C we have for some rate vector yрtЮ1
Cрxрt ю 1ЮЮ ј CрxрtЮЮ ю rCрxрtЮЮzрtЮ ю12zрtЮr2CрyрtЮЮzрtЮ

6 CрxрtЮЮ ю kрtЮzрtЮ ю jjrCрxрtЮЮ  kрtЮjj  jjzрtЮjj ю A1jjzрtЮjj2;


рA:2Ю

where kрtЮ ј рksрtЮ; s 2 SЮ
and the constant A1depends on the initial vector xр0Ю. We next show that

1

kрtЮzрtЮ 6


cjjzрtЮjj2;



Xt


рA:3Ю

jjrCрxрtЮЮ  kрtЮjj  jjzрtЮjj 6 A2


t0јt
2t0


jjzрt0Юjj2

рA:4Ю

for some constant A2that depends on xр0Ю.

First, note that (A.3) holds if the following holds for all s:

1

ksрtЮzsрtЮ 6
jjzsрtЮjj2:



рA:5Ю

c

For t 62 Ts(A.5) trivially holds. For t 2 Tsapply the projection theorem [3] to (7) to obtain

рxрtЮ  ckрtЮ  xрt ю 1ЮЮрxрtЮ  xрt ю 1ЮЮ 6 0:

Rearranging terms yields (A.5).

To show (A.4) note that since all norms in Rnare equivalent there exist constants A3and A4such that

oC

	jjr
	CрtЮ kрtЮjj26A3maxmax

oxspрxрtЮЮkspрtЮsp2Ps


X



C0


l


Xt



blspрt0; tЮCl0р^lрt0ЮЮ

6 A3max max

s
p2Ps


l2p


lрx рtЮЮ


t0јt
t0

l


рA:6Ю

6 A4max max max

s
p2Ps
l2p


max

t
t06t06t

l


C0lрx рtЮЮ
C0lр^lрt0ЮЮ

ј A4max
max

l2L
t
t06t06t


Cl0рx рtЮЮ
C0lр^lрt0ЮЮ
:


рA:7Ю

1
For simplicity we write xy instead of the more correct notation xTy for the inner product of two vectors x and y. We usually use

jjxjj to denote the Euclidean norm, but sometimes jjxjj2for emphasis.
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Let B :ј fxjCрxЮ 6 Cрxр0ЮЮg
and Bl:ј ff jf
јPsPl2p;p2Psxsp , for some x 2 Bg. In words, B is the set of

rate vectors x at which the total cost
CрxЮ
is no greater than the initial cost. As will be seen, provided the

stepsize c is suﬃciently small, CрxрtЮЮ 6 Cрxр0ЮЮ
for all t (see (A.11)). That is, B is the set of all possible rate

vectors given the initial
xр0Ю. (This can be made more rigorous by induction.) Then
Blis the set of all

possible link ﬂows on link l. By condition C2, we have for some constants A5, A6, A2
jjrCрtЮ  kрtЮjj26 A5max


max


xlрtЮ
^lрt0Ю

l2L

6 A5max

l2L


t
t06t06t

max

t
t06t06t



X

s



X

l2p;p2Ps



xspрtЮ



X0
t00јt0t0



alspрt00; t0Юxspрt00Ю



рA:8Ю

6 A6max max


max


max


xspрtЮ
xspрt00Ю


рA:9Ю

s


p2Ps
t
t06t0 6t
t0
t06t00 6 t0

6 A6max max
xspрtЮ
xspрt
1Ю
ю    ю
xspрt
2t0ю 1Ю  xspрt
2t0Ю

s
p2Ps

X1

Hence


6 A2


t0јt
2t0


jjzрt0Юjj2

рA:10Ю

jjrCрxрtЮЮ  kрtЮjj  jjzрtЮjj 6 A2X1jjzрt0Юjj  jjzрtЮjj 6 A2Xtjjzрt0Юjj2
t0јt
2t0


t0јt
2t0

where the last inequality follows from the fact that the convex functionPiyiyю y2Piyiy
attains its

minimum of zero over fyi; yjyiP 0; y P 0g at the origin. This completes the proof of (A.4).

Substituting (A.3) and (A.4) into (A.2) we have

Cрxрt ю 1ЮЮ 6 CрxрtЮЮ 

Summing over all t we have


1

c



A1jjzрtЮjj2ю A2

Xt

t0јt
2t0


jjzрt0Юjj2:

Cрxрt ю 1ЮЮ 6 Cрxр0ЮЮ 




1



A1

 Xt


jjzрsЮjj2ю A2

Xt


Xs


jjzрt0Юjj2
c

1


sј0


sј0
t0јs
2t0

 Xt
6 Cрxр0ЮЮ 


c


A1A2р2t0ю 1Ю



sј0


jjzрsЮjj2:


рA:11Ю

Choose c small enough such that 1=c
A1A2р2t0ю 1Ю > 0. Since xрtЮ
is in a compact set and C is con-

tinuous, CрxрtЮЮ
is lower bounded. Then since CрxрtЮЮ
is bounded for all t we must haveP1sј0jjzрsЮjj2< 1,

which implies

jjzрtЮjj ! 0
as t ! 1:

Substituting this into (A.10) we conclude that

kрtЮ ! rCрtЮ
as t ! 1:


рA:12Ю

рA:13Ю

Let x
be an accumulation point of fxрtЮg. One exists since fxрtЮg is in a compact set. By (A.13) and the fact

that C is continuously diﬀerentiable we have
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kрtЮ ! lim rCрtЮ ј rCрx Ю:

t!1



рA:14Ю

Since the time interval between updates is bounded, for any s, we can ﬁnd a subsequence fxрtkЮ; tk2 Tsg that

converges to x , i.e., limkxрtkЮ ј x . Applying again the projection theorem [4] to (7) we have for any

feasible xs

рxsрtkЮ  cksрtkЮ  xsрtkю 1ЮЮрxsxsрtkю 1ЮЮ 6 0;

рzsрtkЮ ю cksрtkЮЮрxsxsрtkю 1ЮЮ P 0:

Taking k ! 1 we have by (A.12) and (A.14) that for any feasible xs,

rCsрxsЮрxslim xsрtkю 1ЮЮ P 0:

k!1

Since zрtЮ ј xрt ю 1Ю  xрtЮ ! 0 by (A.12), we have limkxsрtkю 1Ю ј limkxsрtkЮ ј xs, and hence

rCsрxsЮрxsxsЮ P 0

for any feasible xs. Summing over all s, we have for any feasible x

rCрx Юрx
x Ю P 0

which, since C is convex, is necessary and suﬃcient for x
to be optimal.

Proof of Theorem 3. Since the cost functions Clare globally Lipschitz uniformly inpl, the constant A1in

(A.2) equals the Lipschitz constant L. For any n-tuple z, jjzjj26
ﬃﬃﬃnjjzjj1, and hence the constant A3in (A.6)

is p. Similarly, since jjzjj16 njjzjj1, the constant A4in (A.7) is ph. By Lipschitz continuity, the constant A5in

(A.8) is A5ј A4L ј phL, the constant A6following is A6ј A5k ј phLk. Finally, since jjzjj16 jjzjj2, we have

A2ј A6ј phLk in (A.11). Hence from (A.11) an upper bound for the stepsize c is

c <


1

A1ю A2р2t0ю 1Ю



ј


1

Lр1 ю phkр2t0ю 1ЮЮ
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